Neurobiology of Sleep and Wakefulness

Histamine Neurotransmission

- Wake promoting neurotransmitter
- Histidine is transported into the cell by histidine transporter
- Brings it into the histidine decarboxylase (HDC) turns into histamine
- Transported into synaptic vesicles for release and neurotransmission

To terminate Histamine action

- There is no reuptake pump
- It has to be converted by N-methyltransferase into N-methylindoleacetic acid
- Which is then broken down by MAO-B to N-MIAA which is inactive

Histamine receptors

- H1 postsynaptic (promote arousal, pro-cognitive) usually blocked by antihistamines
- H2 Postsynaptic
- H3 Presynaptic (turns off histamine release)
- Can also activate NMDA receptor (polyamine site) allosteric modulator to help glutamate do its job

The wake circuit: Histamine

- The TMN Tuberomammillary nucleus is the house of histamine, goes lots of places in your brain (histamine on your awake)
- VLPO: is where GABA is and turns everything off
- Orexin come from lateral hypothalamus, go everywhere in the brain. Assist wakefulness by stabilizing wakefulness. If you lose this part of the brain you get narcolepsy
 - Orexin A

- Work on receptors Orexin1R and Orexin2R
 - Orexin1R works on calcium
 - Orexin 2R works on NMDA receptors and GIRK (potassium channel)
- o Orexin B
 - Work on receptor Orexin2R

- Tonic firing of Hypocretin/Orexin neurons promote wakefulness
- Phasic Burst firing or hypocretin/Orexin Neurons may be related to behavioral cues

The wake circuits

- Histamines
- Acetylcholine
 - o Comes from pedunculopontine and laterodorsal tegmental nuclei
- Dopamine
 - Ventral tegmental area in cortex
- Norepinephrine
 - Locus coeruleus in cortex
- Serotonin
 - o Involved more in sleep
 - o Raphe nucleus to basal forebrain and thalamus

The sleep circuit

- Affected by GABA coming out of the VLPO to the brain and shuts it down Sleep:
 - Four stages and REM
 - o Stages 3 and 4 is restorative sleep
 - GABA turns sleep switch on, higher during sleep
 - Orexin/Hypocretin is the opposite, goes down when you sleep, high when you are awake
 - Acetylcholine tracks REM sleep, up and down all night, high during REM sleep, low in other stages
 - Other neurotransmitters are opposite, low during REM, high during Stage 4

The purpose of sleep

- Helps to maintain your brain garden. Changes synapse formation and revisions at night.
- Weakens learning memory
- Prevents psychiatric disorders
- Affects immunity, need sleep. Lack of sleep can trigger neuroinflammation by not sleeping
- Neurological disorders like Alzheimer's and chronic pain
- Economic costs, sickness absence, lost productivity, motor vehicle accidents
- HPA axis and endocrine dysfunction
- Cancer
- Cardiometabolic disorders such as diabetes, heart disease and stroke

Sleep and Cognition

- Sleep wake cycle disturbance
 - o Impaired hippocampal neurogenesis
 - Cognitive disfunctions
 - Obesity
 - Decrease leptin, Increased ghrelin, and Gut microbiota dysbiosis
 - Increase risk of obesity, type 2 diabetes and cardiovascular disease
 - Medical conditions
 - Substance abuse
 - o Psychiatric conditions: "psychiatric vital sign" 3-5 years of insomnia
 - 4x more likely to have depression, 2x more likely to have anxiety, 7x more likely to develop substance use disorder
 - o Behavioral or psychological causes
 - Medication side effects
 - Sleep wake disorders

Diagnosis and Treatment of Sleep and Wake Disorders

Insomnia

• Excessive arousal at night

Biology of insomnia

- Neuroanatomical abnormalities
 - o Reduced brain matter in left orbitofrontal cortex and hippocampus
- Neurobiological abnormalities
 - o Decreased GABA levels in occipital and anterior cingulate cortices
 - o Reduced nocturnal melatonin secretion
 - Increased glucose metabolism
 - o Attenuated sleep-related reduction in glucose metabolism
 - o Decreased serum BDNF (growth factor, brain derived neurotropic factor)
- Autonomic nervous system abnormalities
- HR elevations and variability
- Increase metabolic rate
- Increased body temp
- HPA axis activation
- Increased NE
- Systemic inflammation
 - o Increased cytokines
- Genetic Factors
 - o CLOCK gene polymorphisms
 - o GABA-A receptor gene polymorphisms
 - o Serotonin reuptake transporter (SERT) gene polymorphisms
 - o Human leukocyte antigen (HLA) gene polymorphism
 - o Epigenetic modification affecting genes involved in the response to stress

DSM-5 Diagnostic criteria

- Insomnia as a comorbidity
- Psychiatric illness can cause insomnia
- Or insomnia can cause psychiatric illness
- Suggested criteria for defining insomnia:
 - o Average sleep latency .30min
 - O Wakefulness after sleep onset (WASO) .30min
 - o Sleep efficiency<85%
 - o Total sleep time<6.5hours

To promote sleep

- Enhance
 - o GABA
- Inhibit
 - Hypocretin/orexin
 - o Ach
 - Dopamine
 - o Norepinephrine
 - o Serotonin
 - Histamines
- Benzo hypnotics

Half life

Table 1. Common Benzodiazepines, Their Half-lives, and Speeds of Onset		
Drug (Brand)	Half-life, h	Speed of Onset
Alprazolam (Niravam, Xanax, Xanax XR, generic)	12-15	Intermediate
Lorazepam (Ativan, Lorazepam Intensol, generic)	10-20	Intermediate
Diazepam (Diastat, Diazepam Intensol, Valium generic)	20-80	Fast
Nordiazepam ^a	31-97	N/A
Oxazepam (Generic)	5-10	Slow
Temazepam (Restoril, generic)	3-13	Fast
Clonazepam (Klonopin, generic)	18-50	Slow

^aNordiazepam is not a prescribed drug in the US. It is, however, a metabolite of the following drugs: chlordiazepoxide (Librium), clorazepate (Tranxene), diazepam, halazepam (not available in the US), medazepam, prazepam and tetraprazepam. Based on reference 6.

Chlordiazepoxide (Librium) 6-30 hours Benzo withdrawal:

Hypothetical Actions of DORAs Wakefulness norepinephrine serotonin = DORA raphe histamine LC TMN basal **PFC** forebrain glutamate acetylcholine PPT/LDT LH/PH thalamus

Diphenhydramine (Benadryl)

• Blocks H1 and M1

diphenhydramine

Doxepin

H1 Antagonist: When you block H1 causes you to sleep

The Ideal Hypnotic Agent

- Ultra long half-life hypnotics can cause drug accumulation (toxicity)
 - o Duration above threshold 24-150 hours
 - o Flurazepam (Dalmane)
 - Quazepam (Doral)
- Moderately long half-life hypnotics do not wear off unit after time to waken (hang over)
 - o Duration above threshold 15-30 hours
 - o Estazolam (ProSom)
 - Temazepam (Restoril)
 - o Most TCA's
 - o Mirtazapine (Remeron)
 - o Chlorpromazine (Thorazine)
- Short half-life hypnotic wears off before time to awaken (loss of sleep maintenance)
 - Half-life 1-3 hours
 - o Examples
 - Triazolam (Halcion)
 - Zaleplon (sonata)
 - Zolpidem (Ambien)
 - Melatonin
 - Ramelteon (rozerem)

Sleep Hygiene

- Sleep time
 - No stimulants before bed
 - Cool environment
 - Dark room
 - No smoking
 - No TV
 - Dark room
 - No disturbances

10-4

- Wake time
 - Activity
 - o Bright lights

Nonpharmacological treatments

- Relaxation training
 - o Aimed to reduce somatic tension and intrusive thoughts that interfere with sleep
- Stimulus control therapy
 - o Get out of bend if not sleepy, only use bed for sleeping, no nappy
- Sleep restrictive therapy
 - Limit time spent in bed to produce mild sleep deprivation, results in more consolidated sleep
- Intrusive sleep retraining
 - o 25hour sleep deprivation period in which the patient is given 50 sleep onset trails but awoken following 3 minutes of sleep
- Cognitive behavioral therapy
 - o Reduce negative attitudes and misconceptions about sleep

Excessive daytime sleepiness

Hypersomnia (too much sleepiness)

- Central disorders of hypersomnolence
 - Idiopathy hypersomnia
 - Do not know the cause
 - Long >10 hours or normal sleep duration
 - Non-refreshing sleep
 - Tx: medication that increases sleep to get deeper sleep for delta sleep
 - o Recurrent hypersomnia
 - Narcolepsy
 - With or without cataplexy
 - Abnormal REM manifestations
 - Intrusion of sleep during wake times
 - Causes the death of the lateral hypothalamus (orexin neurons)
 - Don't stabilize wakefulness so you have sleep attacks.
 - Possible immune system abnormalities. Unknown cause.
- Other causes
 - Medical conditions
 - Obstructive sleep apnea
 - Clinical features:
 - Loud snoring
 - Obesity
 - o HTN
 - o Neck>17"
 - o Enlarged tonsils
 - Loss of interest
 - Excessive daytime sleepiness
 - o Fatigue
 - o Depression
 - Pathophysiology
 - o Partial or full collapse of upper airway
 - Narrowing may occur at different levels

- o Muscle tone, airway reflexes
- Metabolic abnormalities in frontal love white matter of hippocampus due to hypoxia
- medication side effects
- Substance use
- o Psychiatric conditions
 - Depression

Circadian rhythm disorders

- Persistent or recurrent patterns of sleep disruption primary attributed to circadian disruptions and circadian misalignment
- Circadian related sleep disruption resulting in insomnia excessive daytime sleepiness or both
- Sleep disturbance that is associated with impairment in social, occupational, or other areas of function
- Disorders
 - Delayed sleep phase disorder
 - Wake up late, wake up late
 - Seen in teens and elderly
 - o Non-24
 - Rhythm is set by the sun and light (turns off SCN, light inhibits)
 - Shift work disorder
 - Insomnia or excessive sleepiness temporarily associated with a recurring work schedule that overlaps with the usual time for sleep
 - Symptoms associated with shift work schedule are present for at least 1 month
 - Sleep log or actigraphy monitoring (with sleep diaries) for at least 7 days demonstrates disturbed sleep (insomnia) or circadian and sleep time misalignment
 - Sleep disturbances is not due to another current sleep disorder, medical disorder, mental disorder, substance use disorder, or medication
 - Advanced sleep phase disorder
 - Wake up to early and go to bed to early

- Can manipulate this with a combination of light and melatonin
 - o Light therapy early in the day can readjust the circadian rhythm
 - Early morning light

Melatonergic agents

agomelatine not approved in US

Promote wakefulness

- Inhibit
 - o Gaba
- Enhance
 - o Hypocretin/orexin
 - o Ach
 - o Dopamine
 - o Norepinephrine
 - o Serotonin
 - o Histamine

Caffeine

- Dopamine is next to a purine receptor,
- Dopamine fills the dopamine receptor
- Adenosine goes into the purine receptor
 - o This inhibits dopamine actions
- Caffeine blocks the adenosine at the purine receptor
 - Cannot inhibit dopamine
 - Which means dopamine will work better

Amphetamine and Methylphenidate

- Blocks norepinephrine and dopamine reuptake
- Used for narcolepsy and obstructive sleep apnea

Solriamfetol

used for obstructive sleep apnea and narcolepsy

Modafinil or Armodafinil

- block dopamine reuptake and enhance dopamine action
- Once dopamine is triggered it triggers more neurotransmitters
- keeps GABA down

Treating sleep apnea

- CPAP: opens airway
- Oral appliances
- Weight loss
- Surgery of tonsils

Pitolisant

• Stops histamine from being able to turn its self-off. Releases histamine from receptor

Gamma hydroxybutyrate

- Occurs at a GABA receptors A, B and GHB
- Approved for narcolepsy, improves nighttime sleep
- Approved for idiopathic hypersomnia better sleep